Immediately after removal, segments of approximately 3 cm each were cut under sterile conditions from the distal, central and proximal portions of the stents (Fig. 1), placed into sterile tubes and sent to the laboratory for further processing by scanning electron microscopy (SEM) observation, culture and PCR-denaturing gradient gel electrophoresis (DGGE). This last technique was used to identify, in a random selected sample representing the 50% of all explanted stents, species not recovered by culture. For the isolation and identification of aerobic bacteria and fungi, the segments
obtained from the distal end (A) of stents were bisected along their long axis, placed into sterile phosphate-buffered saline (PBS) (pH 7.4) and sonicated in ice for 10 min at 2 μA (Soniprep 150, MSE). Then 0.1 and
0.01 mL of the suspension were plated on nonselective RAD001 solubility dmso media and incubated at 37 °C for 24–48 h under aerobic conditions. Pifithrin-�� clinical trial Isolated microorganisms were counted and identified at the species level using standard biochemical tests. For the isolation and identification of anaerobic bacteria, all procedures were performed in an anaerobic cabinet. Each segment of the proximal portion of the stents was bisected along its major axis and the inner luminal surface of one section of the stent was scraped with a sterile wire loop to remove the sludge and adherent bacteria. Then, the suspension was serially diluted (1 : 10) in sterile PBS and 100 mL of each dilution was spread on prereduced Columbia agar plates supplemented
with 5% sheep blood, 0.1% vitamin K1 and hemin and incubated anaerobically at 37 °C for 72 h. The other half of the stent was transferred into prereduced brain–heart infusion broth, vortex mixed and incubated anaerobically for 7 days. After appropriate dilutions, samples were streaked onto Columbia blood agar plates to determine the bacterial density 2-hydroxyphytanoyl-CoA lyase (CFU) and to recover fastidious anaerobes not grown directly on plates. Individual colonies were selected on the basis of their morphology and plates were both aerobically and anaerobically incubated to exclude the aerobic growths. All anaerobes were identified using the RAPID ID 32A kit (BioMérieux). Each central portion (B) of the biliary stents to be analyzed was bisected along its major axis and the sludge contained in the stent lumen was resuspended in 1 mL of TE buffer (10 mM Tris-HCl, pH 7.2; 1 mM EDTA). The total microbial DNA was directly extracted from the samples according to the method described by Bollet et al. (1991). The universal PCR primers U968-f (5′-AAC GCG AAG AAC CTT AC-3′) and L1401-r (5′-GCG TGT GTA CAA GAC CC-3′) were used to amplify the V6–V8 regions of eubacterial 16S rRNA gene (Randazzo et al.