“Background Human breast cancer is one of the most frequen


“Background Human breast cancer is one of the most frequent malignant tumors with the incidence rate increasing year selleck by year. Based on the GLOBOCAN 2008 estimates,

breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths [1]. The prognosis of the patients with advanced stage breast cancer is poor, because of the progression and metastasis of the disease, even surgical removal, chemotherapy and endocrine therapy were employed for most cases. Prevention and treatment of breast cancer require a better understanding of the molecular mechanisms underlying the progression of breast cancer. Gene therapies for tumor were focused on in recent years, including gene replacement, antisense nucleic acid technique, cytokine gene therapy and RNA interference (RNAi) technique. RNAi is a post-transcriptional regulation and provides a rapid means of depleting mRNAs by introducing double-stranded RNA homologous to a particular message leading to its sequence-specific degradation. It is simple, specific and effective to use small interfering RNA (siRNA) to silence target gene [2]. Jumonji Domain Containing 2A (JMJD2A, also known as JHDM3 or KDM4A) was identified and {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| characterized in 2004 [3]. JMJD2A belongs

selleck chemical to the JmjC domain-containing family JMJD2 proteins, which are lysine trimethyl-specific histone demethylases catalyzing the demethylation of trimethylated H3K9 (H3K9me3) and H3K36 (H3K36me3) [4–6]. JMJD2 family genes are cancer-associated genes [3]. JMJD2A is widely expressed in human tissues and cell lines, and high endogenous expression of JMJD2A mRNA was found in several cell types, including human T-cell lymphotropic virus 1-infected cell lines, the HT1376 bladder carcinoma cell line, the U2OS osteosarcoma cell line and the prostate cancer cell line [7, 8]. However, there are rare

literatures focusing on the relationship between JMJD2A and breast cancer. In this study, JMJD2A-specific siRNA was chemically synthesised and transfected into human breast cancer cell line MDA-MB-231. The levels on JMJD2A mRNA and its protein expression, and biological Fossariinae characteristics of MDA-MB-231 cells including proliferation, migration and invasion were investigated. Materials and methods JMJD2A siRNA synthesis JMJD2A siRNA was chemically synthesised by Qiagen Technology Co. Ltd (Shanghai, China). siRNA was diluted to 20 μmol/L with free-RNase water. siRNA duplexes were synthesised as follows: Sense sequence: 5′-GAGUUAUCAACUCAAGAUA-3′, Antisense sequence: 5′-UAUCUUGAGUUGAUAACUC-3′. Cell transfection Human breast cancer cell line MDA-MB-231 in this research was preserved in our laboratory.

Comments are closed.