Recently, perovskite rare-earth JPH203 solubility dmso manganese tubes such as La0.67Sr0.33MnO3 (LSMO), La0.67Ca0.33MnO3 (LCMO), and La0.325Pr0.300Ca0.375MnO3 (LPCMO) have been fabricated using a sol–gel template synthesis process [53, 72, 73]. Their typical length is about 6 to 8 μm and the average wall thickness is 45, 60, and 150 nm for LSMO, LCMO, and LPCMO, respectively [54]. The walls of the tubes are composed of magnetic Combretastatin A4 nanograins, and their sizes are less than the
critical size for multidomain formation in manganites. As a consequence, each particle that constitutes the nanotube walls is a single magnetic domain. Figure 6a shows the magnetizations of the LSMO, LCMO, and LPCMO nanotubes as a function of the temperature T measured at different applied magnetic fields (only show the
data measured at H = 100 Oe) following the next protocol: zero-field cooling (ZFC) (1 in Figure 6a), cooling the sample SAHA HDAC ic50 from the highest T with H = 0 Oe; afterward, a magnetic field of H =100 Oe was applied and the magnetization data were collected increasing T. Field cool cooling (FCC) (2 in Figure 6a) is performed by measuring the magnetization by cooling the sample with H =100 Oe [54]. Finally, in field cool warming (FCW) (3 in the same plot), the system is warmed with H =100 Oe after FCC. It was noticed that there exists differences between the FCC (2*) and FCW (3*) curves in a broad temperature range for LPCMO nanotubes. Figure 6b displays the square-root temperature dependence of the coercive
fields for the LCMO, LSMO, and LPCMO nanotubes [54]. Clearly, the coercive fields of the LCMO and LSMO nanotubes followed a linear dependence with the square root of temperature, whereas a nonlinear dependence was observed in LPCMO nanotubes, and the higher coercive field value was associated with the competition between the CO and the FM phases in the phase separated LPCMO nanotubes. Normally, Resminostat a linear dependence is expected in the noninteracting particle systems, which can originate in the single magnetic domains that constitute the walls of the ferromagnetic nanotubes [74]. Therefore, as shown in Figure 6, the LSMO and LCMO nanotubes present a homogeneous ferromagnetic behavior below 340 and 258 K, respectively. The magnetic dead layer avoids the exchange interaction between the nanograins, but the dipolar interaction between them was detected which suggests a fanning array of magnetic moments along the tube axis. The coercive field temperature dependence indicates the presence of weak interactions. As for the LPCMO nanotubes, they became mainly ferromagnetic below 200 K. Their thermal hysteresis and the low magnetization values indicate the presence of an extra charge-ordered phase in the LPCMO nanotubes.