The equivalent to 1 mg of fecal material is loaded on each lane. A RNA fragment size (nt) marker was loaded in the first lane from the left side. B) Summary plot of average RNA integrity numbers (RIN) obtained with samples stored in the above 12 conditions. N = 11 individuals for the 88 samples stored without RNAse inhibitor. Standard deviation
is indicated for each storage condition. N = 6 individuals for the 24 samples stored with RNAse inhibitor. Statistical analysis was LY2603618 ic50 performed using Poisson regression model (the star (*) means that the comparison with the frozen sample RIN number was significant with p < 0.05). In all the conditions tested, the amount of RNA extracted was above 30 μg per 250 mg of stool, which is adequate for downstream analyses such as
Romidepsin mouse Foretinib manufacturer qRT-PCR and microarray experiments. When samples were immediately frozen after collection, extracted RNA had average RIN numbers above the value 7, which is the threshold acceptable for conducting metatranscriptomic studies [17, 18]. However, unfreezing these samples during 1 h or 3 h before starting RNA extraction produced a strong RNA degradation, as illustrated in figure 1A by the fading of the 23S rRNA band and the appearance of numerous bands below the 16S rRNA. Decrease of the RIN numbers was significant after thawing samples for 1 h (p = 0.006, Wilcoxon paired test) and 3 h (p = 0.004, Wilcoxon paired test) compared to frozen samples. Conversely, when samples were kept at room temperature during few hours (3 h to 24 h) rather than immediately
frozen after collection, total RNA extracted did not show signs of fragmentation and average RIN numbers were above 7. Longer storage periods at room temperature (more than 24 h) produced a progressive fragmentation of the RNA. Indeed, decrease in RIN number became significant when samples were kept at room temperature during 48 h (p = 0.036, Wilcoxon paired test). Finally, when samples were kept at room temperature in RNAse inhibitor STK38 solution, they showed less signs of fragmentation even after 4 weeks (figure 3A). In these conditions, however, there was a large RIN number variability among individuals (figure 1B). Thus, our results indicate that the best storing condition to extract high quality RNA for metatranscriptomic analyses is to keep the stool samples at room (or low) temperature no more than few hours (< 24 h) after collection. Alternatively, samples can be kept at −20°C for longer periods as long as defrosting is prevented until the extraction of RNA starts in the laboratory.