Irradiation with 405 nm at energy densities of 5, 10, and 20 J/cm2 diminished IL-6 secretion in a dose-dependent manner 48 h post-C. trachomatis infection when compared to C. trachomatis infection alone (Figure 3B, P < 0.05, P < 0.05, and P < 0.005 respectively). Considering the potential for clinical therapies, we tested whether the effect of this phototherapy was dependent upon the 405 nm application time post-chlamydial infection. If applied
24 h post-infection rather than two hours, the significant 405 nm effect on IL-6 was lost (Figure 3B). Figure 3 Effect of 405 nm on IL-6 production in C. trachomatis -infected epithelial cells. (A) HeLa cells were infected with C. trachomatis serovar E at a MOI of 5 (CTE5). (B) Infected cells were then exposed to varying doses of 405 nm at a range of energy densities (5-20 J/cm2) either promptly after infection or 24 h post-infection (post-24 h). VX-809 The effect of 405 nm on IL-6 production was assessed during active (A and B) and penicillin-induced persistent stages (C). Supernatants were collected and measured for IL-6 production using an ELISA. Treatments are grouped based on post-hoc comparisons for convenience. Mean ± SEM are plotted for the two replicated experiments. Statistical differences were determined post-hoc using a Bonferonni adjustment comparing all groups to C. trachomatis infected cells (CTE);
*, P < 0.05; ** P < 0.005. Due to the elevated levels of IL-6 with chlamydia-induced chronic grades of disease, we determined whether penicillin-induced OSBPL9 persistence of a C. trachomatis infection in vitro would mimic Smoothened antagonist the above clinical inflammatory signs. We demonstrated that persistence
induction by penicillin significantly increased IL-6 production compared to C. trachomatis infection alone (Figure 3C, P < 0.05). The absence of IL-6 production above mock-infected levels from HeLa cells stimulated with 200 U/ml of penicillin alone indicates this effect was not cumulative (data not shown). No significant effects were evident on IL-6 production after 405 nm (Figure 3C) or 670 nm (data not shown) irradiation in this penicillin-induced persistent state. The effect of 405 nm irradiation on CCL2 production in C. trachomatis infected HeLa cells Due to the involvement of CCL2 with acute and chronic grades of chlamydial infections [13, 29] and its association with a Th2-mediated response [30], we evaluated the effect of 405 nm photo treatment on its production. In Figure 4 C. trachomatis infection increased production of CCL2 in HeLa cells relative to uninfected cells (Figure 4A, P < 0.05). Though a diminishing pattern was evident for CCL2 production with increasing 405 nm energy densities (Figure 4B), 405 nm treatment failed to demonstrate any significant difference in CCL2 production compared to C. trachomatis infection alone. Unlike IL-6, penicillin-induced C.