On the other hand, minor mutualistic symbionts, such as Lactobacillaceae, B. subtilis et re., Fusobacterium and Cyanobacteria, were detected in 55, 37, 50, and 63% of the subjects, respectively. Opportunistic pathogens,
such as E. faecalis et rel., members of the Clostridium cluster I and II and Enterobacteriaceae, were represented only in 43, selleck screening library 25 and 12% of the subjects, respectively. Most importantly, enteropathogens such as, C. difficile, C. perfringens, E. faecium et rel., B. cereus et rel., and Campylobacter were never detected. A discrepancy between our data and the literature is the relatively low prevalence of the health promoting Bifidobacteriaceae in our samples (only 13% of samples). However, the low prevalence of bifidobacteria
is a typical bias for several phylogenetic DNA microarrays [22, 23]. Probably this is due to the intrinsic low efficiency of amplification of the bifidobacterial genome with universal primer sets for the 16S rRNA gene [8]. Surprisingly, a high prevalence was obtained for the minor mutualistic symbiont B. clausii et rel., 100% of samples, and the opportunistic pathogen Proteus, 50% of samples. For each subject the relative IF contributions of the probes were calculated, obtaining an approximate evaluation of the relative abundance of the principal microbial groups of the faecal microbiota. In general agreement with previous metagenomic studies [7–11] www.selleckchem.com/products/sc79.html and SSU rRNA phylogenetic microarray investigations [22, 23], mutualistic symbionts such as Bacteroidetes, Clostridium clusters IV, IX and XIVa largely dominated the faecal microbiota, contributing for the 65 to 80% of total microbiota, depending on the subject. Differently, with an overall selleck chemicals contribution ranging from 10 to 30%, minor mutualistic symbionts such as
B. clausii et rel., Bifidobacteriaceae, Lactobacillaceae, B. subtilis et rel., 17-DMAG (Alvespimycin) HCl Fusobacterium, and Cyanobacteria were largely subdominant. Opportunistic pathogens represented only a small fraction of the intestinal microbiota. Even if subjects under study show a common trend when the ratio between the relative IF of major, minor and opportunistic components were considered, differences in the relative IF contribution of single probes were detectable and subject specific profiles were identified. For instance, subject n. 1 showed a higher relative fluorescence for probes targeting major mutualistic symbionts and a lower relative fluorescence for minor mutualistic symbionts and opportunistic pathogens than subjects n. 4 and 15. On the other hand subjects n. 15 and 17 were characterized by a lower ratio Bacteroidetes/Firmicutes with respect to all the other subjects. It is tempting to hypothesize that differences in relative IF contribution within samples could represent an approximation of differences in relative abundances of the targeted groups in the faecal microbiota.