We localized the gamma-band response to bilateral lateral occipital cortex, and both the gamma-band response and the M170-evoked response to the right fusiform gyrus. Differences in the gamma-band response between faces and scrambled stimuli were confined to the frequency range 50–90 Hz; gamma-band activity at higher frequencies did not differ between the two stimulus categories. We additionally identified a component of the M220-evoked response – localized MK-1775 cost to the parieto-occipital sulcus – which was enhanced for scrambled vs. unscrambled faces. These findings help to establish that MEG beamforming can localize face-specific responses
in time, frequency and space with good accuracy (when validated against established findings from functional check details magnetic resonance imaging and intracranial recordings), as well as contributing to the establishment of best methodological practice for the use of the beamformer method to measure face-specific responses. “
“Delayed neuronal destruction after acute spinal injury is attributed to excitotoxicity mediated by hyperactivation of poly(ADP-ribose) polymerase-1 (PARP-1) that induces ‘parthanatos’, namely a non-apoptotic cell death mechanism. With an in vitro model of excitotoxicity, we have
previously observed parthanatos of rat spinal cord locomotor networks to be decreased by a broad spectrum PARP-1 inhibitor. The present study investigated whether the selective PARP-1 inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-(N,N-dimethylamino)acetamide.HCl
(PJ-34) not only protected networks from kainate-evoked excitotoxicity, but also prevented loss of locomotor patterns recorded as fictive locomotion from lumbar (L) ventral roots (VRs) 24 h later. PJ-34 (60 μm) blocked PARP-1 activation and preserved dorsal, central and ventral gray matter with maintained reflex activity even after a large dose of kainate. Fictive locomotion could not, however, be restored by either electrical stimulation or bath-applied neurochemicals (N-methyl-D-aspartate plus 5-hydroxytryptamine). A low kainate concentration induced less histological ROS1 damage that was widely prevented by PJ-34. Nonetheless, fictive locomotion was observed in just over 50% of preparations whose histological profile did not differ (except for the dorsal horn) from those lacking such a rhythm. Our data show that inhibition of PARP-1 could amply preserve spinal network histology after excitotoxicity, with return of locomotor patterns only when the excitotoxic stimulus was moderate. These results demonstrated divergence between histological and functional outcome, implying a narrow borderline between loss of fictive locomotion and neuronal preservation. Our data suggest that either damage of a few unidentified neurons or functional network inhibition was critical for ensuring locomotor cycles.