aeruginosa or E coli as detected by crystal violet staining (C)

Selleckchem MLN2238 aeruginosa or E. coli as detected by crystal violet staining. (C) Relative number of SCV CFUs recovered after 6 h of growth for S. aureus CF1A-L in co-culture with PAO1 or K12 as determined using the double chamber co-culture model. (D) Relative

expression ratios for the gene asp23 were evaluated by qPCR for CF1A-L in co-culture with PAO1 or K12. For B, C and D, results are normalized to unexposed CF1A-L (dotted line). Data are presented as means with standard deviations from three independent experiments. Significant differences between unexposed CF1A-L and the exposed conditions (*, P < 0.05; ***, P < 0.001) and between CF1A-L exposed to PAO1 or K12 (Δ, P < 0.05; ΔΔΔ, P < 0.001) were revealed by one-way ANOVA followed by the tuckey's post BI 2536 nmr test. HQNO from P. aeruginosa stimulates S. aureus biofilm production by a SigB-dependent mechanism We used the pqsA and pqsL mutants derived from P. aeruginosa buy EX 527 PA14 to further confirm the specific effect

of HQNO on biofilm production by S. aureus. The pqsA mutant does not produce any 4-hydroxy-2-alkylquinolines (HAQs) at all [44, 45], whereas the pqsL mutant is specifically altered in HQNO biosynthesis [46]. Thus, we have used both pqsA and pqsL mutants in order to distinguish the global impact of all P. aeruginosa HAQs from the specific impact of HQNO on biofilm production by S. aureus. Fig. 6A shows that the growth of the pqsA and pqsL mutants is

not impaired compared to that of the parental strain PA14, thus excluding variations in supernatant composition caused by differences in growth rates among strains. Fig. 6B shows that the supernatant from an overnight culture of P. aeruginosa PA14 stimulates biofilm production by S. aureus CF1A-L in comparison to the supernatant from the pqsL mutant (specific HQNO-minus strain). The effect of different Interleukin-2 receptor doses of supernatants from overnight cultures of P. aeruginosa PA14, the pqsA mutant, the pqsL mutant or E. coli K12 on biofilm production by S. aureus CF1A-L is shown in Fig. 6C. While supernatants from both mutants significantly induced less biofilm production in comparison to PA14, this attenuated effect was more pronounced for the pqsA mutant (negative for the production of all HAQs) than the pqsL mutant. This result can be explained by the fact that other HAQs secreted by P. aeruginosa, although less potent than HQNO, can also have a growth-inhibitory activity against S. aureus [47]. Noteworthy, all three strains of P. aeruginosa stimulated biofilm production in comparison to E. coli, suggesting that other P. aeruginosa exoproducts can indeed stimulate biofilm production by S. aureus. Figure 6 HQNO from P. aeruginosa stimulates biofilm production of S. aureus strains by a SigB-dependent mechanism. (A) Growth curves of P. aeruginosa strain PA14 and the pqsA and pqsL mutants.

Comments are closed.