meliloti on a proteomic as well as a transcriptomic scale [12–15]

meliloti on a proteomic as well as a transcriptomic scale [12–15]. But the cellular response of S. meliloti to acid stress has so far not been investigated on a genome-wide level. pH stress can affect cells in several ways and therefore different responses exist. Acid this website tolerance in general is a mechanism of the cell to face an unfavourable acidic condition, whereas

an adaptive EVP4593 purchase acid tolerance (ATR) is defined as increased tolerance against low pH after growing cells in moderately low pH media [16] (for review see [17]). For rhizobia most studies about genes involving the acid stress response have been conducted with S. medicae (formerly classified as S. meliloti WSM 419). By using a transposon mutagenesis system [18] a functionally diverse set of pH responsive and acid tolerance related genes could be identified [19]. Gene products required for acid tolerance in S. medicae are for example ActP, a CPx heavy metal transporting ATPase Dorsomorphin clinical trial [20], and ActA, an apolipoprotein acyl transferase [21]. A gene coding for a regulatory protein known to be

required for the acid tolerance in S. medicae is actR [22]. The encoded response regulator ActR is activated by its corresponding sensor histidine kinase ActS, whose loss also leads to sensitivity to low pH. The cbbS gene involved in CO2 fixation and the narB gene involved in nitrate assimilation as well as the nitrogen fixation regulator genes fixK and nifA could be identified as target genes for the regulator ActR [23]. Along with the genes required for low pH tolerance some further genes up-regulated by low pH were identified for S. medicae [19, 24]. Among these was lpiA, a gene found to be necessary for the adaptive acid tolerance (ATR). In Rhizobium tropici, the bacterial symbiont of Phaseolus vulgaris, this gene was also up-regulated by low pH and was found to be necessary for an increased nodulation competitiveness [25]. In this study the transcriptional response of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 PR-171 cell line was

analysed on a genome wide level. Using whole-genome Sm6kOligo microarrays [15] the expression of S. meliloti genes responding to this environmental change was monitored over a period of one hour. The data obtained was filtered and clustered to obtain groups of genes with a similar behaviour. Results and Discussion Growth analysis of S. meliloti 1021 cultures exposed to neutral and acidic pH The aim of this study was to analyse the transcriptional response of S. meliloti 1021 following a shift from a neutral to an acidic pH. Since adaptation to new environmental conditions means passing through an evolving process of cellular responses until reaching a steady state balance, it was decided to monitor the transcriptional response over a certain period of time. One critical point concerns the correct choice of parameters for the pH shift. The pH stress should be applied to S.

J Biol Chem

J Biol Chem https://www.selleckchem.com/products/azd5582.html 1982,257(6):3018–3025.PubMed 26. Ripmaster TL, Shiba K, Schimmel P: Wide cross-species aminoacyl-tRNA synthetase replacement in vivo: yeast cytoplasmic alanine enzyme replaced by human polymyositis serum antigen. Proc Natl Acad Sci USA 1995,92(11):4932–4936.PubMedCrossRef 27. Kozak M: Initiation of translation in prokaryotes and eukaryotes. Gene 1999,234(2):187–208.PubMedCrossRef 28. Sasaki

J, Nakashima N: Translation initiation at the CUU codon is mediated by the internal ribosome entry site of an insect picorna-like virus in vitro. J Virol 1999,73(2):1219–1226.PubMed 29. Yoon H, Donahue TF: Control of translation initiation in Saccharomyces cerevisiae . Mol Microbiol 1992,6(11):1413–1419.PubMedCrossRef Authors’ contributions CPC generated the various ALA1 constructs and performed the screening of functional non-AUG initiator codons, complementation www.selleckchem.com/products/ulixertinib-bvd-523-vrt752271.html assays, and RT-PCR assays. SJC generated the various ALA1-lexA fusion constructs and performed the Western blotting. CHL performed the β-galactosidase assays. TLW helped design the experiments. CCW coordinated the project and wrote the manuscript. All authors read and

approved the final manuscript.”
“Background Acanthamoeba is a multifaceted opportunistic pathogen that infects mainly immunocompromised people and/or contact lens wearers [1–4]. Despite advances in antimicrobial chemotherapy, the mortality rate associated with Acanthamoeba granulomatous encephalitis remains very high, i.e., > 90% Crenigacestat solubility dmso [2, 3, 5]. This is, in part, due to our incomplete understanding of the pathogenesis and pathophysiology of Acanthamoeba encephalitis. A whole-organism approach to the study of disease is considered essential in gaining a full understanding of the interrelationships between infectious agents and their hosts [6, 7]. At present, mice are most widely used models to study Acanthamoeba granulomatous encephalitis in vivo. Mostly, Acanthamoeba granulomatous encephalitis is limited to individuals

with a weakened immune system, so mice are pre-treated generally with corticosteroid to suppress the host defences, followed by intranasal inoculation of Acanthamoeba [8–11]. Leukocyte receptor tyrosine kinase Although vertebrate model systems are seen as immediately more relevant, recent studies have demonstrated the possibility of using insects as a model to study Acanthamoeba pathogenesis in vivo [12]. Thus a major aim of this proposal is to generate wider acceptance of the model by establishing that it can be used to obtain important novel information of relevance to Acanthamoeba encephalitis without the use of vertebrate animals. Infection-induced anorexia [13, 14] and locust mortality was determined for Acanthamoeba isolates belonging to the T1 and T4 genotypes.

PLD expression is uncommon among other bacterial pathogens and th

PLD expression is uncommon among other bacterial pathogens and these PLDs are exclusively of the HKD superfamily. However, most of the pathogens that do express PLD have obligate or facultative intracellular lifestyles and expression of this enzyme is thought to be involved in disease pathogenesis [31–35]. Specifically in Neisseria gonorrhoeae and Rickettsia spp., PLDs are required for invasion of host cells [32, 35]. This work characterizes the effects of A. Go6983 mouse haemolyticum AZD6738 ic50 PLD on host cells, with an aim to elucidating the role of this toxic enzyme in disease pathogenesis. We report that PLD is required for optimal adhesion to host cells, via remodeling

of lipid rafts. Furthermore, PLD expressed inside host cells is directly toxic, leading to cell death via necrosis. These findings provide the first conclusive evidence that PLD may be required for A. haemolyticum disease pathogenesis. Results Analysis of the pld gene region A draft genome sequence of A. haemolyticum ATCC9345 was determined (B.H. Jost and S.J. Billington, unpublished

data), and this data was used to identify sequences flanking the pld gene (GenBank Accession Number L16583). The pld gene was found in a region resembling a 1.9-kb genomic island of lower %G + C than the rest of the A. haemolyticum genome (53.1%). This region consists of pld (47.2% G + C), and orf489 (50.3% G + C) which lacks a signal sequence and is of unknown AZD4547 molecular weight function (Figure 1). 43-bp downstream check details of pld and 17-bp upstream of orf489 is a stem-loop structure with a ΔG = -20.8 kcal/mol, which may act as a transcriptional terminator or attenuator. There does not appear to be any direct or indirect repeats flanking this region. The pld region is flanked upstream by three tRNA genes and gluRS, encoding a glutamyl-tRNA synthetase (EC 6.1.1.17), and downstream by dcp, encoding a peptidyl-dipeptidase (EC 3.4.15.5), which is divergently transcribed

compared to pld (Figure 1). The %G + C of the surrounding housekeeping genes (Figure 1) more closely resembles the %G + C of the A. haemolyticum genome. Figure 1 Map of the pld gene region. The open arrows indicate genes and the direction of transcription. Triangles below the sequence indicate the location of stem-loop structures, with the ΔG (kcal/mol) shown inside the triangle. Gene names are given above or below the arrows and the number below the name indicates the %G + C of the gene. A bar indicating 1-kb is shown on the right. Given the variation in %G + C of the pld gene and the presence of adjacent tRNA genes, which often act as sites of foreign gene insertion [36], it is possible that the A. haemolyticum pld gene was acquired by horizontal gene transfer. It would appear that orf489 is also part of the transferred DNA, and while it is not translationally coupled to pld, its transcription may be linked to that of pld despite the presence of a transcriptional terminator/attenuator between the two genes.

The mutant in lane 2 was therefore named Δku70 Figure 3 KU70 del

The mutant in lane 2 was therefore named Δku70. Figure 3 KU70 deletion

strategy and Southern blot results. (A) Schematic illustration of KU70 deletion strategy. LB and RB are the left border and right border sequences of T-DNA derived from pPZP200, respectively; P GPD1 : R. toruloides GPD1 promoter; hpt-3: codon-optimized hygromycin phosphotransferase gene; T nos : transcriptional terminator of A. tumefaciens nopaline synthase AZD1152 order gene; LoxP: recognition sequences of Cre recombinase; Rg70Lf and Rg70Rr: primers to amplify KU70 gene deletion region; Rg70f3 and Rg70r2: primers for fungi colony PCR; Rt100 and Rt101: primers to amplify probe used for Southern blot analysis. Unique restriction enzyme digest sites used are shown. (B) Southern blot results of putative ∆ku70 transformants. Genomic DNA was digested with PvuI and a band shift from 2.2 kb (WT) to 2.7 kb indicates successful deletion of KU70. Gene deletion frequency was improved in the ∆ku70 mutant While the deletion of KU70 was obtained with a relatively high frequency (5.2%), deletion of the mating-type

specific gene STE20 and orotidine 5-phosphate decarboxylase gene URA3[24, 25] proved to be very difficult (Table 2). The low deletion frequency of STE20 and URA3 highlighted a need for an improved gene deletion system. To investigate if the Δku70 strain generated earlier could be utilized for this purpose, the hygromycin selection check details cassette (P GPD1 ::hpt-3::T nos ) was excised to generate a marker-free R. toruloides KU70-deficient AZD2281 in vitro derivative (∆ku70e) by activating the Cre recombinase using human hormone 17β-estradiol (Liu et al., unpublished data). As we found that high percentage of 5-fluoroorotic acid (5-FOA) resistant transformants were not true deletion mutants of URA3 previouly, we decided to evaluate the deletion of CAR2 homologue as a fast assay for gene deletion frequency because it encodes a bifunctional

protein catalyzing phytoene synthase and carotene cyclase that is essential in the biosynthesis of β-carotene [25, 26]. Table 2 Gene deletion frequency Rucaparib in vivo in WT and ∆ku70e strains Gene target Homolgy lengtha(bp) Gene deletion frequencyb WT ∆ku70e STE20 800 0 (560) 2.1% (48) URA3 1000 0 (48) 95.8% (48) CAR2 750 10.5% (6152) 75.3% (885) Note: aHomology sequence length on each side of the hygromycin selection cassette; bNumber in parenthesis indicate number of transformants screened. Using U. maydis Car2 [26] as a query for tBLASTn search against the R. toruloides ATCC 204091 genome database, a DNA fragment sharing high sequence homology to the query (GenBank acc. no. AVER02000018 from 396838 to 399094-nt, E-value = 1E-23) was identified. CAR2 was successfully amplified using DNA template of R. toruloides ATCC 10657 using oligos Rt079 and Rt080.

For example, MthMsvR has a classic bacterial helix-turn-helix DNA

For example, MthMsvR has a classic bacterial helix-turn-helix DNA binding domain and a V4R domain. Although the V4R domain is present in learn more many bacterial and archaeal proteins, the function of the V4R domain is not well understood and appears to have diverse functions from hydrocarbon binding to bacterio-chlorophyll synthesis [12]. There are three cysteine residues conserved within the V4R domain of MsvR family proteins. Earlier work with MthMsvR suggested differing DNA binding activity under oxidizing (or non-reducing) and reducing conditions [9]. Additionally, MthMsvR regulates expression of an operon encoding genes involved in oxidative

stress response [5, 8, 9]. This suggests that the structure or function of the V4R domain in this family may be sensitive to cellular redox status. Although homologues of MsvR are encoded in the majority of methanogen genomes, thus far, only MthMsvR has been characterized using in vitro approaches [9, 13]. Currently, there are two BTSA1 mouse genera

of methanogens (Methanococcus and Methanosarcina) with genetically tractable species where in vivo approaches could be used to ascertain the role of MsvR [14, 15]. The in vitro functional analysis of the Methanosarcina acetivorans MsvR (MaMsvR) homologue presented here opens the door for future in vivo analyses of the biological role of MsvR utilizing the genetic toolbox of M. acetivorans[16, 17]. To determine whether the DNA-binding and redox-sensitive properties of MthMsvR are universal among MsvR homologues, the MsvR homologue (MA1458) from M. acetivorans (Ma) was purified and characterized. Results and discussion Protein kinase N1 M. acetivorans C2A encodes an MsvR family protein, MaMsvR A BlastP [18] alignment indicated that at the amino acid level, MaMsvR is 33% identical and 48% similar to characterized MthMsvR (KPT-8602 purchase Figure 1a; >241 residues underlined in gray) [9]. The domain organization is also conserved between the two proteins, with an N-terminal DNA binding domain and a C-terminal

V4R domain (Figure 1a). Within the DNA binding domain, 48% of the residues indicated by the conserved domain database (CDD) to be involved in DNA binding are conserved (Figure 1a, red boxes) and 45% of residues are conserved throughout the domain (Figure 1a, black box) [19]. Despite this disparity, all MsvR family proteins have a conserved DNA motif upstream of their MsvR encoding genes. In previous studies, this sequence was bound by MthMsvR [9]. Within the V4R domain, MthMsvR and MaMsvR are 36% identical. MthMsvR contains five cysteine residues, all within the V4R domain (Figure 1a, blue boxes, purple box) [9]. Two of the cysteines are found within a CX2CX3H motif characteristic of some metal-binding proteins involved in redox-sensitive transcription, such as the anti-sigma factor RsrA (Figure 1a, purple box) [20].

Statistics All experiment unless indicated were performed at leas

Statistics All experiment unless indicated were performed at least three times. All experimental results were expressed as the arithmetic mean and standard deviation selleck chemicals (s.d.) of measurements was shown. Student’s

t-test was used for statistical significance of the differences between treatment groups. Statistical analysis was performed using analysis of variance at 5% (p < 0.05) or 1% (p < 0.01). Results Zn-curc complex induces apoptotic cell death in cancer cell lines carrying mtp53 (H175 and H273) To evaluate the biological effect of Zn-curc complex we performed long-term survival assay in cancer cells lines carrying different p53 point mutations. Increasing doses of Zn-curc (20, 50, 100 μM) accordingly inhibited cell

growth of SKBR3 (R175H) and U373 (R273H) cell lines while did not affect T98G (M237I) and MDA-MB231 (R280K) cell growth (Figure 1A), as evidenced by the quantification of the colony assays (Figure 1B). In our hands, Zn-curc did not affect long-term survival of normal human fibroblast (HF) (Figure 1A, 1B). Viability assay show that Zn-curc treatment selleckchem induced time-dependent cell death only in SKBR3 and U373 cells compared to T98G and MDA-MB231 cells that were not affected (Figure 1C). Moreover, FACS analysis of SKBR3 cells stained with propidium iodide (PI) showed increased subG1 population after Zn-curc treatment, highlighting MEK inhibitor cell death (Figure 1D), as also evidenced by microscopic

analysis (Figure 1D, lower panel). In agreement, the apoptotic marker PARP was cleaved in both SKBR3 and U373 cells after zinc treatment (Figure 1E). Finally, because Zn-curc has been reported to have DNA intercalating ability [13] we analysed the potential DNA damage occurring after treatment. As shown in Figure 1F, Zn-curc induced H2AX phosphorylation (γH2AX); as positive control of DNA damage we used the chemotherapeutic agent adryamicin (ADR) and as negative control we used ZnCl2 treatment. Together, these results suggest that Zn-curc exerted antiproliferative/apoptotic effects in mtp53-carrying cell lines, in particular with H175 and H273 mutations. Figure 1 Zn-curc impairs survival of mutant p53-carrying cells. (A) Tumor cells (4 x 104) were plated in 60 mm dish and 24 h later treated with increased amount of Zn-curc (20, 50, 100 μM). Low-density-lipoprotein receptor kinase Twenty-four hours later, plates were washed with PBS and fresh medium was added. Death-resistant colonies were stained with crystal violet 14 days later. (B) Death-resistant colonies as in (A) were counted and plotted as percentage ± SD of two independent experiments performed in duplicate. (C) Cells (3 x 105) were plated at subconfluence in 60 mm dish and the day after treated with Zn-curc for 24 and 48 h. Cell viability was measured by trypan blue exclusion assay and expressed as percentage ± SD of two independent experiments.

J Clin Microbiol 2005,43(1):66–73 PubMedCrossRef 29 Johnson JR,

J Clin Microbiol 2005,43(1):66–73.PubMedCrossRef 29. Johnson JR, Owens KL, Clabots CR, Weissman SJ, Cannon SB: Phylogenetic relationships among clonal groups of extraintestinal pathogenic Escherichia coli as assessed by multi-locus sequence analysis. Microbes and infection /Institut Pasteur learn more 2006,8(7):1702–1713.PubMedCrossRef 30. Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Bree A, Germon P, Oswald E, Mainil J, Blanco M, Blanco J: Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 2006,44(10):3484–3492.PubMedCrossRef 31. Levy SB,

FitzGerald GB, Macone AB: Spread of antibiotic-resistant Selleck CP-690550 plasmids from chicken to chicken and from chicken to man. Nature 1976,260(5546):40–42.PubMedCrossRef 32. Linton AH, Howe K, Bennett PM, Richmond MH, Whiteside EJ: The colonization of the human

gut by antibiotic resistant Escherichia coli from chickens. J Appl Bacteriol 1977,43(3):465–469.PubMedCrossRef 33. Ojeniyi AA: Direct transmission of Escherichia coli from poultry to humans. Epidemiol Infect 1989,103(3):513–522.PubMedCrossRef 34. van den Bogaard AE, Willems R, London N, Top J, Stobberingh EE: Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother 2002,49(3):497–505.PubMedCrossRef 35. Moulin-Schouleur M, Reperant M, Laurent S, Bree A, Mignon-Grasteau Reverse transcriptase S, Germon P, Rasschaert D, Schouler C:

Extraintestinal pathogenic Escherichia coli strains of avian and human origin: link between phylogenetic relationships and common virulence patterns. J Clin Microbiol 2007,45(10):3366–3376.PubMedCrossRef 36. Hagan EC, Mobley HL: Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol Microbiology 2009,71(1):79–91.CrossRef 37. Bonacorsi SP, Clermont O, Tinsley C, Le Gall I, Beaudoin JC, Elion J, Nassif X, Bingen E: Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect Immun 2000,68(4):2096–2101.PubMedCrossRef 38. Dozois CM, Daigle F, Curtiss R: Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. Proc Natl Acad Sci U S A 2003,100(1):247–252.PubMedCrossRef 39. Feldmann F, Sorsa LJ, Hildinger K, Schubert S: The AZD1390 chemical structure salmochelin siderophore receptor IroN contributes to invasion of urothelial cells by extraintestinal pathogenic Escherichia coli in vitro. Infect Immun 2007,75(6):3183–3187.PubMedCrossRef 40. Peigne C, Bidet P, Mahjoub-Messai F, Plainvert C, Barbe V, Medigue C, Frapy E, Nassif X, Denamur E, Bingen E, Bonacorsi S: The plasmid of Escherichia coli strain S88 (O45:K1:H7) that causes neonatal meningitis is closely related to avian pathogenic E.

J Virol 2004, 78:10156–10165 PubMedCrossRef 33 Chen DS, Asanaka

J Virol 2004, 78:10156–10165.PubMedCrossRef 33. Chen DS, Asanaka M, Chen FS, Shively JE, Lai MM: Human carcinoembryonic antigen and biliary glycoprotein can serve as mouse hepatitis virus receptors. J Virol 1997, 71:1688–1691.PubMed 34. Plaut AG, Gilbert J, Artenstein MS, Carpa JD: Neisseria gonorrhoeae and Neisseria meningitidis : Extracellular enzyme cleaves human immunoglobulin A. Science 1975, 190:1103–1105.PubMedCrossRef 35. Lee BC, Schryvers AB: Selleck SAR302503 Specificity of the lactoferrin and transferrin receptors in Neisseria gonorrhoeae .

Mol Microbiol 1988, 2:827–829.PubMedCrossRef 36. Gray-Owen SD, Schryvers AB: The interaction of primate transferrins with receptors on bacteria pathogenic to humans. Microb Pathog 1993, 14:389–398.PubMedCrossRef 37. Ram BS, Cullinane M, Blom AM, STA-9090 price Gulati S, McQuillen DP, Monks BG, O’Connell C, Boden R, Elkins C, Pangburn MK, et al.: Binding of C4b-binding protein to porin: A molecular mechanism of serum resistance of Neisseria gonorrhoeae . J Exp Med 2001, 93:281–295.CrossRef 38. Ngampasutadol J, Ram S, Blom AM, Jarva H, Jerse AE, Lien E, Goguen J, Gulati S, Rice PA: Human C4b-binding protein selectively interacts with Neisseria gonorrhoeae and results in species-specific

infection. Proc Natl Acad Sci USA 2005, 102:17142–17147.PubMedCrossRef Authors’ contributions CRH, MV, UG, and RK conceived of the study, MV and CRH designed the experiments, MV and VB performed the experiments, CRH and MV wrote the paper. All authors read

and approved the final manuscript.”
“Background Human beings have been recently reconsidered as superorganisms in co-evolution with an immense microbial community living in the gastrointestinal tract (GIT), the human intestinal microbiota [1, 2]. Providing important metabolic functions that we have not evolved by our click here own [3], the intestinal microbiota has a fundamental role for the human health and well being [4, 5]. Several of our physiological features, such as nutrient processing, maturation of the immune system, pathogen resistance, and development of the intestinal architecture, strictly depend on the mutualistic symbiotic relationship with the intestinal microbiota [6]. On the basis of its global impact on human physiology, the intestinal microbiota has been considered an essential organ of the human body [7]. The composition of the adult intestinal microbiota has been determined in three large scale 16S rRNA sequences surveys [7–11]. The phylogenetic analysis of a total of 45,000 bacterial 16S rRNA data from 139 adults revealed that, at the phylum level, only a small fraction of the known bacterial diversity is represented in our GIT. The vast majority of bacteria in the human intestinal microbiota (>99%) belongs to six bacterial phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Fusobacteria and Verrucomicrobia.

This corroborated the survival and CLSM data described above Fig

This corroborated the survival and CLSM data described above. Figure 5 TEM of control C. jejuni and C. jejuni pre-exposed to heat stress within vacuoles of A. castellanii

trophozoites at different time points. At buy MLN4924 0 h after gentamicin treatment, control C. jejuni (A) and C. jeuni pre-exposed to heat stress (C). At 5 h after gentamicin treatment, control C. jejuni (B and with zoom out in E) and heat stressed C. jejuni (D and with zoom out in F). The white arrows show C. jejuni cells inside amoeba vacuoles. Discussion Effect of pre-exposure to stress on survival of C. jejuni Although C. jejuni has strict growth requirements [40–42], it has developed mechanisms for survival in diverse www.selleckchem.com/p38-MAPK.html environments, both inside and outside the host, where it is subjected to various stresses [40, 43]. In agreement with prior studies [4, 7, 44–48], our data showed that heat, low nutrient and osmotic stresses significantly reduced the survival of C. jejuni in the absence of amoeba (Figure  1), as assessed by colony forming units counting. C. jejuni is known to turn into coccoid cells under sub-optimal culture conditions, which correlates with decreased culturability [6, 49]. However, we observed by CLSM microscopy that, under the stress conditions applied, only a small proportion of the cell population turned into coccoid cells (Data selleckchem not shown). Therefore,

coccoid formation could not account for the described decrease in viability. Pre-exposure to oxidative stress did not affect the survival of C. jejuni in comparison with non-stressed cells. This could reflect the fact that C. jejuni possesses mechanisms which can eliminate reactive oxygen species to prevent cellular damage [42, 50]. While these systems are not as developed as in aerobic bacteria and only allow survival of C. jejuni under moderate oxidative stress, their existence could explain why the limited oxidative

stress imposed had no effect on the survival of C. jejuni. The oxidative treatment applied in this study was nevertheless shown previously to be sufficient to induce considerable transcriptional regulation [13], which we also observed for the ciaB gene (see below). Effect of pre-exposure to stress on the transcription of ciaB, htrA and dnaJ The transcription of virulence genes is modulated by different stresses in many bacterial pathogens [51–53]. As a microaerophilic bacterium, C. jejuni must adapt to oxidative stress during transmission and infection [7] and, consistent with this idea, our qRT-PCR data showed that oxidative stress increased the transcription of the ciaB gene (2.7 fold). This is reminiscent of a previous report that culture with bile acid deoxycholate primes C. jejuni to invade epithelial cells by stimulating the synthesis of Cia proteins [54].

IV Science 109: 140–142 1950 Benson AA and Calvin M (1950a) Car

IV. Science 109: 140–142. 1950 Benson AA and Calvin M (1950a) Carbon dioxide fixation by green plants. Annu Rev Plant Physiol 1: 25–42. Benson AA and Calvin M (1950b) The path of carbon in photosynthesis.VII. Respiration and Photosynthesis. J Exper Bot 1 : 63–68. Benson AA, Bassham JA, Calvin M, Goodale TC, Haas VA and Stepka W (1950) The path of carbon in photosynthesis.V.Paper chromatography and radioautography of the products. J Am Chem Soc 72: 1710–1718. Bassham JA, Benson AA and Calvin M (1950) The path of carbon in photosynthesis.VIII. Role of Malic https://www.selleckchem.com/products/3-methyladenine.html acid. J Biol Chem 185 : 781–787. Calvin M, Bassham JA and Benson AA (1950)

Chemical transformation of carbon in photosynthesis. Fed Proc 9 : 524–534. 1951 Benson AA (1951a) The sequence of formation of hexoses during photosynthesis. Arch Biochem Biophys 32: 223–224. Benson AA (1951b) Identification of ribulose in C14 O2 photosynthetic products. J Am Chem Soc 73: 2971. Benson AA, Bassham JA and Calvin M (1951) Sedoheptulose in photosynthesis by plants. J Am Chem Soc 73: 2970. 1952 Ouellet C and Benson AA (1952) The path of carbon in photosynthesis.XIII. pH effects in C14 O2 fixation by Scenedesmus. J Exper Bot 3: 237–245. Benson AA, Bassham JA Calvin M, Hall AG, Hirsch HE, Kawaguchi S, Lynch V and Tolbert NE (1952a) The path of carbon in photosynthesis.XV. Ribulose and Sedoheptulose.. J Biol Chem 196: 703–716.

Benson AA, Kawaguchi S, Hayes P and Calvin M (1952b) The path of carbon in photosynthesis.XVI. Kinetic relationships of the intermediates in steady state VX-661 photosynthesis. J Am Chem Soc 74: 4477–4482. Calvin M, Bassham JA, Benson AA and Massini P (1952) Photosynthesis. Annu Rev Phys Chem 3 : 215–228. Benson AA (1952) Mechanism of biochemical photosynthesis. Zeit Elektrochemie 56: 848–854. 1953 Bassham JA, Benson AA and Calvin M (1953) Isotope studies in photosynthesis. J Chem Educ 30: 274–283. Buchanan JG, Lynch VH, Benson AA, Bradley DF and Calvin M (1953) The path of carbon in photosynthesis.XVIII. The identification of nucleotide coenzyme. J Biol Chem

203: 935–945. 1954 Bassham JA, Benson AA, Kay LD, Harris AZ,. Wilson AT and Calvin M (1954). The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J Am Chem Soc 76: 1760–1770. Benson AA (1954) Photosynthesis: First reactions. J Chem Educ 31: 484–487. Erastin mw Quayale JR, Fuller RC, Benson AA and Calvin M (1954). Enzymatic carboxylation of ribulose diphosphate photosynthesis.. J Am Chem Soc 76: 3610- 3611. Shibata K, Benson AA and Calvin M (1954) The absorption spectra of suspensions of living microorganisms. Biochim Biophys Acta 15: 461–470. Nordal A and Benson AA (1954) Isolation of mannoheptulose and identification of its phosphate in avocado leaves. J Amer Chem Soc 77: 4257–4261. 1955 Goodman M, Benson AA and Calvin M (1955) Fractionation of phosphates from Scenedesmus by anion exchange. J Amer Chem Soc 77: 4257–4261.