By contrast, BMRF1 expression, regulated primarily by Zta, did not differ significantly between the two cell lines. Our results support a model in which LF2 regulates EBV replication by binding to Rta and redistributing it out of the nucleus.”
“Glutamate is the principal excitatory neurotransmitter
in the central nervous system. Recent evidence suggests that beta lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Moreover, these antibiotics have been shown to prevent the development of tolerance and dependence to opioids, and reduce visceral and nerve injury-induced neuropathic nociceptive responses. The aim of this study is to observe the effect of a beta lactam antibiotic, ceftriaxone,
on mechanical allodynia and mechanical hyperalgesia in diabetic rats. Diabetes was produced with the injection of a single dose of streptozocin SAHA HDAC (50 mg/kg, i.p.) and this procedure resulted in neuropathic pain behaviors in the hindpaws. Mechanical allodynia was detected with an electronic aesthesiometer, and mechanical hyperalgesia was studied using the method of Randall-Selitto. With its higher doses, ceftriaxone (100, 200 mg/kg, i.p.) reduced both mechanical allodynia and hyperalgesia. Dihydrokainic acid (10 mg/kg, i.p.), a selective GLT-1 transporter inhibitor, reversed the anti-allodynic and anti-hyperalgesic effects of ceftriaxone, at doses that produced no effect on its own. Our results indicate that ceftriaxone exerts an antinociceptive effect in streptozocin-induced heptaminol MK-2206 datasheet diabetic rats and GLT-1 activation by beta lactam antibiotics may be a promising option in the treatment of diabetic neuropathy. (C) 2011 Elsevier Ireland Ltd. All rights reserved.”
“HIV-1 gp140 envelope immunogens express conserved epitopes that are targeted by broadly cross-reactive neutralizing antibodies, but they fail to elicit similar antibodies upon immunization. The poor immunogenicity of conserved epitopes on gp140 could be linked to the high immunogenicity of variable Env regions on such constructs. Previous studies have shown that the first hypervariable
region (V1 loop) is immunogenic on soluble gp140s but elicits type-specific antibodies. To address issues related to the high immunogenicity of the V1 loop, two conceptually opposite approaches were tested. In the first approach, we eliminated the V1 loop from our gp140 construct and examined how V1 deletion altered the immunogenic properties of other Env regions. In the second approach, we took advantage of the high immunogenicity of the V1 loop and engrafted four diverse V1 loops onto a common gp140 Env “”scaffold.”" These four scaffolds were used as a cocktail of immunogens to elicit diverse anti-V1 antibodies, under the hypothesis that eliciting diverse anti-V1 antibodies would expand the neutralizing breadth of immune sera.